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Abstract
We study BPS vortex configurations in three-dimensional U(N) Yang–Mills
theories with Chern–Simons interaction coupled to scalar fields carrying flavor.
We consider two kinds of configurations: local vortices (when the number of
flavors Nf = N ) and semi-local vortices (when Nf > N ). In both cases,
we carefully analyze the electric and magnetic properties and present explicit
numerical solutions.

PACS numbers: 11.15.Kc, 11.27.+d, 11.10.Kk

1. Introduction

Non-Abelian vortices may find their application in a variety of problems ranging from
particle physics and cosmology (e.g. confinement, supersymmetric and supergravity models,
hot or dense QCD, cosmic strings) to condensed matter physics (e.g. quantum Hall effect).
Of particular interest are those vortices solving first-order Bogomolny–Prasad–Sommerfield
(BPS) equations, which correspond to the saturation of the Bogomolny bound for the mass
and naturally arise in supersymmetric theories (see [1–3] for reviews with complete lists of
references).

Non-Abelian BPS equations for vortices have been analyzed both for Yang–Mills–Higgs
[4–8] and Chern–Simons–Higgs [9–15] models. In the former case, the gauge and the
(fourth-order) Higgs potential coupling constants have to be related in order to pass from the
second-order equations of motion to a first-order BPS system. When the Chern–Simons term,
originally introduced in the context of topologically massive gauge theories [16], dictates the
dynamics of the gauge field, one is forced to choose a sixth-order Higgs potential in order to
find a Bogomolny bound for the vortex mass. Again, coupling constants should be related
[11, 17, 18].
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The origin of these requirements can also be understood in the framework of
supersymmetry: they are necessary conditions for the existence of an N = 2 supersymmetry
extension of the bosonic models. In this context, the first-order BPS equations arise studying
the supersymmetry algebra and looking for supersymmetric states. The resulting selfdual and
anti-selfdual solutions break 1/2 of the original supersymmetry [19–21].

The mixed case of Yang–Mills–Chern–Simons (YMCS) vortices was also recently
discussed [22, 23]. As in the Abelian case [24], in order to have a Bogomolny bound and the
first-order BPS equations the coexistence of the two terms giving dynamics to the gauge field
requires a careful choice of the number and type of scalars. Moreover, the Gauss law, through
which the Chern–Simons term enters into the energy, is no longer an algebraic equation for
A0, as in the case when the Yang–Mills term is absent, but a second-order differential equation
that should be taken into account together with the first-order BPS system.

It is the purpose of this work to construct explicit BPS vortex solutions for the YMCS
model thus completing the analysis presented in [23] where the low-energy vortex dynamics
was the main aim of study. We shall take U(N) as the gauge group, and include Nf scalars in
the fundamental representation and one real scalar in the adjoint representation of U(N). We
shall consider two cases: when the number of flavors Nf is equal to the number of colors N
and also when Nf > N , in which case vortices become semi-local [14, 25–27].

2. The model and the BPS equations

We shall consider the d = 2 + 1 dimensional U(N) YMCS model discussed in [23] with
dynamics governed by the Lagrangian

L = − 1

2e2
Tr FμνF

μν − κ

4π
Tr εμνρ

(
Aμ∂νAρ − 2i

3
AμAνAρ

)
+

1

e2
Tr(Dμφ)2

+ |Dμqi |2 − q
†
i (φ − mi)

2qi − e2

4
Tr

(
qiq

†
i − κφ

2π
− v2

)2

. (1)

Here qi are Nf scalars with i being the flavor index (i = 1, 2, . . . , Nf ). Each qi transforms
in the fundamental representation of the gauge group U(N), and φ is a real scalar in the
adjoint. We shall first discuss the Nf = N case (local vortices) and then extend the analysis
to Nf > N (semi-local vortices). Whenever it does not lead to confusion summation over
flavors is implicit. The gauge field Aμ takes values in the Lie algebra of U(N),Aμ = AA

μtA,
where tA = (tA)ab are the U(N) generators (A = 1, . . . , N2 − 1; a, b = 1, . . . , N) with
normalization Tr tAtB = δAB/2. The curvature and covariant derivatives are defined as

Fμν = ∂μAν − ∂νAμ − i[Aμ,Aν]

Dμφ = ∂μφ − i[Aμ, φ] (2)

Dμqi = ∂μqi − iAμqi.

The Chern–Simons coefficient κ must be an integer for N > 1.
The masses mi of the fundamental scalars break the flavor symmetry to U(1)N−1

f . There
exists a fully broken Higgs phase in which the scalars take the following expectation values:

qa
ivac = δa

i

√
v2 +

κmi

2π
, φab

vac = δabmb, Aab
μvac = 0. (3)

In this vacuum, the U(N) gauge symmetry and the U(1)N−1
f flavor symmetry are spontaneously

broken. There remains only a diagonal symmetry, U(N) × U(1)N−1
f → U(1)N−1

diag . This
corresponds to the combined action of a gauge group element Uab ∈ U(N) and a flavor
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transformation Vij = δij eiαj ∈ U(1)N−1
f (with N − 1 independent parameters αj ):

qa
ivac → Uabqb

jvacVji, φab
vac → Uacφcd

vac(U
−1)db, (4)

where U = V −1.
Let us note that in the e2 → ∞ limit where the Yang–Mills term and the kinetic energy term

for the φ field can be discarded, the adjoint field φ may be eliminated from the Lagrangian, and
for mi = 0 one ends up with the sixth-order potential which allows one to find BPS equations
for the pure Chern–Simons–Higgs system both in the Abelian [17, 18] and non-Abelian [11]
cases:

lim
e2→∞

V [q, φ,mi = 0] = (4π)2

κ2
(|qi |2 − v2)2|qi |2. (5)

The energy associated with Lagrangian (1) can be constructed from T00, the time–time
component of the energy–momentum tensor Tμν . It takes the form

E =
∫

d2xT00 =
∫

d2x

[
1

e2
Tr

(
E2

α + B2
)

+
1

e2
Tr((D0φ)2 + (Dαφ)2) + |D0qi |2 + |Dαqi |2

+ q
†
i (φ − mi)

2qi +
e2

4
Tr

(
qiq

†
i − κφ

2π
− v2

)2 ]
, (6)

where Eα = F0α, B = F12.
Following the Bogomolny procedure of square completion a lower energy bound can be

obtained [23]:

E �
∣∣∣∣∣2πnv2 +

∑
i

Qimi

∣∣∣∣∣ . (7)

Here n ∈ Z is the topological charge of the configuration, which corresponds to the topological
degree associated with the qi component that carries the winding,

n = 1

2π
Tr

∫
d2x B, (8)

and Qi are the conserved Noether charges associated with the residual U(1)N−1 flavor
symmetry,

Qi = i
∫

d2x
(
q
†
i D0qi − (D0qi)

† qi

)
. (9)

Using the Gauss law one can find the typical Chern–Simons term connection between charge
and flux: ∑

i

Qi = eκ

2π
�, (10)

with � being the magnetic flux:

� = 1

e
Tr

∫
d2x B = 2π

e
n. (11)

The bound (7) is saturated whenever the following BPS first-order equations hold:

D1qi ± iD2qi = 0 (12)

B ± e2

2

(
qiq

†
i − κφ

2π
− v2

)
= 0 (13)

D0φ = 0 (14)
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Eα ∓ Dαφ = 0 (15)

D0qi ∓ i(φ − mi)qi = 0. (16)

It should be signaled that in obtaining the bound, it is necessary to use the Gauss law [23]:

− κ

4π
B +

i

2

[
(D0qi)q

†
i − qi(D0qi)

†] +
1

e2
DαEα +

i

e2
[D0φ, φ] = 0, (17)

which should then be considered together with equations (12)–(16) when looking for explicit
vortex solutions.

At the bound, the energy of configurations can be identified with the BPS soliton mass,

M =
∣∣∣∣∣2πv2n +

∑
i

Qimi

∣∣∣∣∣ . (18)

In what follows we choose the upper sign in equations (12)–(16), which corresponds to a
non-negative winding. Of course, the opposite choice is equally treatable.

3. The vortex ansatz

Starting from the trivial vacuum, a winding can be introduced through a singular gauge
transformation generated by

�(ϕ) = diag[1, 1, . . . , einϕ] = e
inϕ

N diag
[
e−i n

N
ϕ, e−i n

N
ϕ, . . . , ei n(N−1)

N
ϕ
]
. (19)

We have written the formula above, so as to emphasize that � combines a U(1) element with
an element of ZN , the center of SU(N). Then, a configuration of the form

qsing = �(ϕ)qvac (20)

with qvac being the trivial vacuum (3) will lead to a topologically nontrivial but singular (at
the origin) string configuration. To avoid the singularity the natural ansatz for a regular vortex
should be

q = diag[η1, η2, . . . , ηN einϕqN(ρ)] (21)

with η2
i ≡ v2 + κmi/2π and qN(ρ) vanishing at ρ = 0. Then, (21) should be supplemented

with consistent ansätze for the remaining fields:

φ = diag[m1,m2, . . . , mN + hN(ρ)] (22)

Aϕ = diag[0, 0, . . . , n − aN(ρ)] (23)

Aρ = 0. (24)

The complete set of appropriate boundary conditions ensuring finite energy is

aN(0) = n, aN(∞) = 0, qN(0) = 0 (25)

qN(∞) = 1, hN(∞) = 0. (26)

Concerning A0, equations (14) and (15) require

[A0, φ] = 0, ∂ρ(A0 + φ) = 0. (27)

This suggests

A0 = −φ + C with [C, φ] = 0, (28)

with C determined by (16):

(φ + A0)
abqb

i = miq
a
i → Cab = δabmb. (29)

Unless all masses vanish, one cannot set A0 = −φ. The above equation fixes A0 in our ansatz:

A0 = diag[0, 0, . . . ,−hN(ρ)]. (30)

4
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4. The BPS vortex solution

Plugging ansatz (21)–(24) into equations (12), (13) and (17) gives

ρ∂ρqN − aNqN = 0 (31)

1

ρ
∂ρaN − e2

2

(
η2

Nq2
N − κ

2π
hN − η2

N

)
= 0 (32)

κ

4πρ
∂ρaN − hNη2

Nq2
N +

1

e2

(
∂2
ρhN +

1

ρ
∂ρhN

)
= 0. (33)

Note that the Gauss Law constraint is at the origin of the second-order derivative in hN in (33).
It will be convenient to define

β = e2η2
N

2
, γ = κ

2πη2
N

, (34)

and

a(τ) = aN(ρ), q(τ ) = qN(ρ), h(τ) = γ hN(ρ), (35)

where τ = √
βρ. One can use (32) to eliminate ∂ρaN in (33) so that equations can be recast

in the form

da

dτ
= τ(q2 − h − 1) (36)

dq

dτ
= 1

τ
qa (37)

dh

dτ
= u (38)

du

dτ
= 2hq2 − α(q2 − h − 1) − 1

τ
u, (39)

where α = βγ 2. The boundary conditions imposed by finite energy read now

a(0) = n, a(∞) = 0,

q(0) = 0, q(∞) = 1, (40)

h(∞) = 0.

Concerning the behavior of h at the origin, it should go to a finite constant.
Using (18), the vortex mass for our ansatz takes the form

M = 2πv2n + QNmN = 2πη2
Nn. (41)

The BPS vortex mass is solely determined by the topological charge, the role of η2
N being just

that of a scale.
Our result is of course consistent with the re-parametrized form of the energy:

E = 2π

e2

∫
τ dτ

(
2

γ 2
(h′)2 +

β

τ 2
(a′)2 +

4

γ 2
q2h2 + 2

β

τ 2
a2q2 + 2β(q ′)2 + β(q2 − h − 1)2

)
,

(42)

which after some algebra and integration by parts can be written as follows:

E = 2π

e2

∫
τ dτ

(
2β

[
q ′ ∓ aq

τ

]2

+ β

[
a′

τ
∓ (q2 − h − 1)

]2

− 2

γ 2
h

[
1

τ
(τh′)′ − 2hq2 ± α

a′

τ

]
∓ 2βτ−1a′

)
. (43)
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The upper sign corresponds to our non-negative winding ansatz. The first three terms in the
integral vanish as they are readily identified with the Bogomolny equations, while the last term
gives the expected contribution to the vortex mass M = 2πη2

Nn.
Let us note that for mN = 0, equations (36)–(39) reduce to the Abelian case discussed in

[24]. It is, indeed, typically observed that the non-Abelian ZN -vortex equations of a model
reduce to the Abelian equations when the coupling constants of the U(1)- and the SU(N)-
gauge groups are set equal (this choice has been made implicitly here by working with the
gauge group U(N)). In the case mN 	= 0, the only modification with respect to the mN = 0
case arises through the parameter α = e2

4π
κ2(2πv2 + κmN)−1. Hence we can obtain the

profile functions of any general {mN 	= 0, κ} vortex from a {mN = 0, κ ′} solution by setting
κ ′ = κ/

√
1 + κmN/2πv2. However, the behavior of the physical observables depends upon

the value of mN . If the Chern–Simons term is absent (κ = 0), the Gauss law is satisfied
by h = 0 and our ansatz reduces to the well-honored Abrikosov–Nielsen–Olesen vortex
[28, 29].

To obtain numerical solutions to the BPS equations (36)–(39) we have used a relaxation
method, selecting the following four boundary conditions:

a(0) = 1, q(∞) = 1, h(∞) = u(∞) = 0. (44)

Given our ansatz, the magnetic field B and the electric field E can be defined as

B = Tr F12, E = Tr F0ρ. (45)

They are depicted in figure 1 where we have set e2/v2 = 1. It is interesting to observe the
behavior of the magnetic field in the case mN 	= 0. As κ is increased, the magnitude of
the magnetic field at the origin initially increases. At large enough κ , however, the B-field
starts to decrease at the origin and begins to show a characteristic bump, as encountered in
the Abelian case [24]. Any further increase in κ amplifies the size of the bump. The electric
field is considerably smaller than the magnetic field for small κ , but it also increases as the
Chern–Simons coupling becomes important. As in the mN = 0 case, the ratio Emax(κ)/Bmax(κ)

increases linearly with κ for small κ , and eventually tends to a constant.
We may explain this behavior by observing that we have α(κ) ∝ κ2∀ κ when mN = 0

and α(κ) ∝ κ for κ � 2πv2/mN when mN 	= 0. The limit κ � 2πv2/mN is where the
effects of non-zero mN become noticeable. The profile functions a, h and q thus depend
more sensitively on κ when the mass is zero. Furthermore, when computing the electric and
magnetic fields from the functions a and h, their behavior is not explicitly dependent on κ

for mN = 0, whereas we have explicit dependence of order O(κ) in B and of order O(
√

κ)

in E for mN 	= 0 in the same limit. In the zero-mass case [24], the magnetic field starts to
exhibit the typical doughnut shape as κ is increased, at the same time as its overall strength
decreases. The electric field develops the characteristic bump and also becomes weaker. As a
consequence, the ratio Emax/Bmax, which vanishes as κ → 0, approaches a finite constant for
κ � 2πv2/mN . For mN 	= 0, on the other hand, the explicit κ-dependence of the electric and
magnetic fields counteracts the trend of a and h becoming smaller for larger κ . The maxima
of the two fields now increase for a larger range of κ and do not go to zero as κ → ∞. As a
result, the ratio Emax(κ)/Bmax(κ) still tends to a finite constant asymptotically, but it reaches it
more slowly as mN becomes larger. It is also worth noting that the radius of the bump in the
electric field linearly increases with κ when mN = 0, whereas it approaches a constant when
mN = 0 (see figure 1).

Let us end this section by computing the angular momentum for the vortex solution using
the formula

J =
∫

d2x εij xiT0j =
∫

d2x T0ϕ (46)

6
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Figure 1. The magnetic field B and the electric field E of the {n = 1,mN/v2 = 1, κ} vortex are
shown for κ = 0, 10, 60, 100. The κ = 0 line corresponds to the Abelian–Nielsen–Olesen vortex,
which exhibits no electric field.

(which is actually independent of the ansatz). Given Lagrangian (1), one has

T0ϕ = 2

e2
ρ Tr(EρB) +

2

e2
Tr(D0φDϕφ) + ((D0qa)

†(Dϕqa) + (Dϕqa)
†(D0qa))

= 2

e2
h′

Na′
N + 2η2

NhNq2
NaN . (47)

Using the Gauss law, which for our ansatz reads

η2
NhNq2

n = 1

e2

(
h′′

N +
1

ρ
h′

N

)
+

κ

4π
(a′

N/ρ), (48)

we can write

T0ϕ = 2

e2ρ

d

dρ
(ρaNh′

N) +
κ

4π

1

ρ

d
(
a2

N

)
dρ

. (49)

So, we have for J

J = 2π

(
2

e2
ρaNh′

N +
κ

4π
a2

N

)∣∣∣∣
∞

0

(50)
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or finally

J = −κ

2
n2. (51)

Since κ takes integer values, the angular momentum is quantized also at the classical level.
Note that in view of equation (10), which in the present case reduces to QN = κn, we see that
the angular momentum can be written in terms of the square of the charge (in contrast to the
pure Yang–Mills case in which it is proportional to the charge [9, 10]).

5. Semi-local vortices

Unlike Abrikosov–Nielsen–Olesen vortices and their non-Abelian extensions, the radius of a
semi-local vortex is not fixed but it becomes a parameter. This kind of vortices emerges
when Nf > N , that is, when there are Ne = Nf − N additional fundamental scalars
{pe = qN+e} , e = 1, . . . , Nf −N in comparison with the local vortices arising in the N = Nf

case.
We then start from Lagrangian (1) now with Nf > N and consider minimization of the

potential in the general case mi 	= mj∀ i 	= j , with i, j � N . The mass term in the Nf > N

Lagrangian,

Lm = q
†a
i (φab − δabmi)

2qb
i , (52)

can only be made to vanish for N non-zero fundamental scalars, since we may only pick N of
the diagonal entries in φ to cancel the δabmi terms. Then, in order to minimize the potential
the remaining qi need to vanish. Without loss of generality, we may choose {pe = qN+e}
to vanish. These fields then lie in the unbroken vacuum. Spontaneous symmetry breaking
of U(N)g × U(1)

Nf −1
f occurs as before for the original N-sector while the additional fields

exhibit invariance under the more general transformation,

pa
evac −→ exp(iαe)U

abpb
evac, (53)

with unconstrained {αe}. These fields must be topologically trivial. If we adopt the previous
ansatz for the original fields, equation (13), which as we explain below is still valid for
Nf > N, requires all components of pa

e to vanish identically except for a = N . This suggests
the following ansatz for the pe:

pa
e = ηNδaNξe(τ ). (54)

Furthermore, it is required by (16) that the mass of any additional (non-trivial) scalar pe be
equal to the mass of the field that carries the winding,

me = mN if ξe(τ ) 	= 0. (55)

Equation (6) for the energy in the Nf = N case is still valid for Nf > N and so is
the bound (7) and the BPS equations (12)–(16). Concerning the axially symmetric ansatz, it
consists of that proposed in the local case, equations (21)–(24), augmented with (54) for the
extra scalars. Inserting the ansatz in the BPS equations one now obtains

da

dτ
= τ(q2 + |ξe|2 − h − 1) (56)

dq

dτ
= 1

τ
qa (57)

dξe

dτ
= 1

τ
(a − n)ξe, e = 1, . . . , Nf − Nc (58)

8
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dh

dτ
= u (59)

du

dτ
= 2h(q2 + |ξe|2) − α(q2 + |ξe|2 − h − 1) − 1

τ
u, (60)

with |ξe|2 = ∑
e ξ

†
e ξe. Equations (57) and (58) can be used to solve for the profile functions

{ξe} [25]:

ξe(τ ) = χe

q(τ)

τ n
(61)

with χe ∈ C arbitrary complex constants that parametrize the solutions. Of course, if we set
all the χe parameters to zero, the system (56)–(60) coincides with (36)–(39) and the semi-local
vortices become ordinary local ones.

The energy of the semi-local vortex is

Es = 2π

e2

∫
τdτ

(
2

γ 2
(h′)2 +

β

τ 2
(a′)2 +

4

γ 2
h2(q2 + |ξe|2) + 2

β

τ 2
a2q2 + 2

β

τ 2
(a − n)2|ξe|2

+ 2β((q ′)2 + |ξ ′
e|2) + β(q2 + |ξe|2 − h − 1)2

)
. (62)

As in the local case, it is straightforward to show that this can be written as

Es = 2π

e2

∫
τdτ

(
2β

[
q ′ ∓ aq

τ

]2

+ 2β

∣∣∣∣ξ ′
e ∓ (a − n)ξe

τ

∣∣∣∣
2

+ β

[
a′

τ
∓ (q2 + |ξe|2 − h − 1)

]2

− 2

γ 2
h

[
1

τ
(τh′)′ − 2h[q2 + |ξe|2] ± α

a′

τ

]
∓ 2βτ−1a′

)
, (63)

the upper sign corresponding to the non-negative winding vortex. Energy (63) reduces to the
lower bound in (7) when the Bogomolny equations are satisfied:

Ms =
∣∣∣∣∣2πnv2 +

∑
i

Qimi

∣∣∣∣∣ . (64)

In the case of semi-local vortices, one can define a parameter χ , the complexified size of
the vortex, through the formula

|χ |2 =
∑

e

|χe|2 . (65)

We thus see that, as expected, the vortex mass is χ -independent but the behavior of the fields
at infinity drastically changes with respect to the local case: the fields have a long-range power
falloff instead of an exponential one. This can be seen in figure 2, which shows the numerical
solutions to (56)–(60). Indeed, at large distances (ρ � 1/e

√
β) and for very large transverse

size of the vortex (χ � e
√

β) one can see how the asymptotic behavior is no more that of an
exponential falloff but a power one. The analytical asymptotic behavior of the fields aN and
qN is

an ≈ n
|χ |2
ρ2|n| , qN ≈ 1 − 1

2

|χ |2
ρ2|n| , (66)

whereas hN has the same exponential falloff behavior as in the local vortex case:

hN ≈ e−ηN ρ

√
ρ

. (67)
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Figure 2. The magnetic and electric fields of an {n = 1,mN/v2 = 1, κ = 100} vortex with
|χ |2 = 0, 2, 5, 50, 100.

Let us finally note that the presence of the radius χ also reduces the Chern–Simons
characteristic bump at the origin.

Concerning the angular momentum for the semi-local vortices, the component T0ϕ of the
relevant energy–momentum tensor component obtains just an extra term �T0ϕ with respect to
the local case:

�T0ϕ = η2
N

e2

(∑
e

(D0ξe)
∗(Dϕξe) + h.c.

)

= ∓2
ηN

e2
hn(n − aN)η2

N |ξe|2 (68)

and then

T0ϕ = ± 2

e2
h′

Na′
N ± 2η2

NhN

(
q2

N + |ξe|2
)
aN ∓ 2nη2

NhN |ξe|2. (69)

Using the Gauss law,

ρ−1 d

dρ
hN(ρ)ρ) = η2

Nhn

(
q2

N + |ξe|2
) ∓ κ

4π
ρ−1a′

N, (70)
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we can write

T0ϕ = ± 2

e2

1

ρ

d

dρ
(h′

NaNρ) +
κ

4π

1

ρ

d

dρ

(
a2

N

) ∓ 2nη2
NhN |ξe|2, (71)

where the first two terms coincide with the local vortex value for T0ϕ . Taking into account the
boundary conditions one now has

J = 2π

∫
T0ϕρ dρ = −κ

2
n2 ± 2nη2

N

∫
hN |ξe|2ρ dρ. (72)

Thus, unlike the case of local vortex, the angular momentum is not simply quantized in terms
of κn2 but it depends explicitly on the size of the semi-local vortex.

6. Discussion

A rich spectrum of non-Abelian vortices in theories where the dynamics of the gauge field is
governed by both a Yang–Mills and a Chern–Simons action was shown to exist in [22, 23],
where the low-energy vortex dynamics was described in terms of a gauged sigma model on
the vortex worldline. Although the BPS equations were obtained, explicit solutions were not
presented and this was precisely the main objective of our work. To this end, we proposed
an axially symmetric ansatz leading to BPS vortex solutions for a YMCS U(N) gauge theory
coupled to scalars when the number of flavors Nf � N , analyzing the electric and magnetic
properties of the local (Nf = N) and semi-local (Nf > N) vortices.

A first interesting feature of the local vortex solutions concerns the localization of the
magnetic and electric fields. As expected, as the Chern–Simons coefficient κ grows, the
magnetic maximum moves away from the vortex center and the electric field, also with an
annulus shape, starts to develop. Semi-local vortices exhibit a similar behavior except that
B and E have a long-range power falloff instead of an exponential one (only the real scalar
field keeps its exponential falloff behavior). Another difference between local and semi-local
vortices concerns the angular momentum which is a purely topological object in the former
case while it depends on the vortex size in the latter semi-local case.

Our investigation started from the Lagrangian proposed in [23] with the scalar potential and
constants chosen so as to guarantee the possibility of anN = 2 supersymmetric extension, thus
ensuring the existence of BPS equations [1–3]. Actually, it would be of interest to investigate
the properties of the supersymmetric model and to construct the low-energy effective action
describing moduli dynamics and analyze its properties both at the classical and quantum levels,
following the approach presented in [13] for the pure Chern–Simons case. We hope to discuss
these issues in a future work.
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